Scan for sub-image within another image
def find_image(small_image, large_image):
img = cv2.imread(small_image)
img2 = img.copy()
template = cv2.imread(large_image)
print(template.shape[::-1])
w, h, d = template.shape[::-1]
# All the 6 methods for comparison in a list
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
logger.info(f'Small image: {small_image}\nLarge image: {large_image}')
for meth in methods:
img = img2.copy()
method = eval(meth)
# Apply template Matching
res = cv2.matchTemplate(img,template,method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
logger.info(f'\n\tMethod: {meth} \n\tMin Val: {min_val}\n\tMax Val: {max_val}\n')
# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
# if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
# top_left = min_loc
# else:
# top_left = max_loc
# bottom_right = (top_left[0] + w, top_left[1] + h)
# cv2.rectangle(img,top_left, bottom_right, 255, 2)
# plt.subplot(121),plt.imshow(res)
# plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
# plt.subplot(122),plt.imshow(img)
# plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
# plt.suptitle(meth)
# plt.show()